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1. DEFINITION AND INTRODUCTORY REMARKS

We shall use the symbol K to denote a continued fraction (terminating or
non-terminating) in a similar manner as the familiar symbols L: and n are
used to denote a sum and a product:

The Nth approximant of the nonterminating continued fraction

IS

Convergence of a nonterminating continued fraction means convergence of
the sequence of approximants.
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A general T-fraction is a continued fraction of the form

(
1) N Fz

P(z) + Q -; + Co + ~l 1 +nGnz ' (I.I )

where P and Q are polynomials ===0 or without constant term and where
co, Fn , Gn are complex numbers, Fn =f 0 for n < N + 1. If N = 00, the
general T-fraction is called infinite or nonterminating, if N < 00, it is finite or
terminating. The case N = 0, where the K-expression is empty and hence 0,
is also accepted.

In the nonterminating case and with P(z) + Q(I/z) + Co =, eo + doz,
eo =f 0 the general T-fraction has the equivalent form

en =f 0 for n): O. (1.1 ')

Continued fractions of this form are referred to by Perron [8, p. 173] as
"Thronsche Kettenbriiche," since they are generalizations of the continued
fractions

(1.2)

introduced by Thron [9]. Later the continued fractions (1.2) are referred to
as T-fractions. In addition to Perron's studies the continued fractions (1.1 ')
or (1.1) have been studied by McCabe and Murphy (see, e.g., [7]) and
independently by Jones and Thron [3].

Some of the most essential properties of general T-fractions have to do
with their (possible) correspondence to pairs (L(z), L *(z» of formal Laurent
series and with their relation to two-point Pade tables [3, 5]. The appro
ximants of a general T-fraction (1.1) with Q === 0 and Gn =f 0, n ): I form
a diagonal in the two-point Pade table of (L(z), L *(z». General T-fractions
have also proved useful in solving algebraic equations numerically [4] and
in solving a certain moment problem [6].

The general T-fraction (1.1) is said to correspond to the ordered pair
(L(z), L*(z» of formal Laurent series

I 00

L(z) = Q (-) + Co + L CkZ\
Z k~l

(1.3)
o

L *(z) = P(z) + L ctzk

k=-oo

if and only if P, Q, CO are the same in (1.1) and (1.3), and for any natural
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number n the nth approximant of (1.1) has a Laurent expansion at 0 with the
start

(correspondence at 0),

and a Laurent expansion at 00 with the start

o
P(z) + L cZzk

k=-(n-l)

(correspondence at 00),

where Ck and crt have the same meaning as in (1.3) [3]. (In the termininating
case all nth approximants for n > N are equal to the Nth approximant.)
In paper [3] a set of necessary and sufficient conditions on the coefficients
of L(z) and L *(z) for existence of a corresponding general, nonterminating
T-fraction with all Gn 0/= 0 is given. It is easy to prove that Gn 0/= 0 for all
n < N + 1 is necessary (and sufficient) for a general T-fraction to correspond
to some pair (1.3) of formal Laurent series [13], and hence the condition
Gn 0/= 0 does not represent any restriction. However, the theorem in [3] does
not cover the terminating case.

It is easy to prove that the pair (1.3) corresponds to the general T-fraction
(l.l) if and only if

corresponds to

Hence, without loss of generality we may restrict ourselves to formal Laurent
series of the types

""
L(z) = 1 + L CkZk,

k=l
(1.4)

o
L *(z) = L c:z\

k=-oo

and general T-fractions of the form

[13]. (1.5)
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Let (L(z), L *(z» be a pair offormal power series (1.4), and let for a fixed n,
~n<N+I,

(1.6)

be a terminating general T-fraction with the property that for any integer k,
I ~ k ~ n, the kth approximant of (1.6) has a Laurent expansion at 0 with
the start

Ie

I + L c.z·
v=l

and a Laurent expansion at Cf:) with the start

o
I c:zV

,

v=-(Ie-l)

cv and c: being the same as in (1.4). Then (I.6) shall be called a proper start
(a proper n-start if we want to emphasize the length) of a possible general
T-fraction corresponding to (L(z), L *(z», or briefly a proper start for
(L(z), L *(z». It is obvious, that except for the case L(z) = L *(z) = I,
when the corresponding general T-fraction is I, a necessary condition for
existence of a corresponding general T-fraction is the existence of proper
starts of any length or a proper start which is the (terminating) general
T-fraction corresponding to (L(z), L*(z». It is rather easy to prove that this
is also sufficient (A crucial point is the uniqueness of the parameters Fie , GIe)

[13J.
It is a straightforward verification to prove that for any (L(z), L *(z» #

(1, I) a proper I-start exists if and only if C1 =F 0, ct =F I, in which case

(1.7)

is the unique proper I-start. If a proper I-start exists, the formal identities

(1.8)

define a new pair (/(z), I*(z» of formal Laurent series of the form (1.4). This
pair is in [13] called the descendant of (L(z), L *(z». In the particular case
when (/(z),I*(z» = (1, 1) the terminating general T-fraction (1.7) is the
corresponding general T-fraction of (L(z), L*(z». In all other cases,
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(l(z), l*(z)) mayor may not have a proper I-start. It is easy to prove that the
following holds for any n :;?; 2:

is a proper n-start for (L(z), L *(z)) if and only if

is a proper (n - I)-start for (l(z), l*(z)) [13].

2. A BOUNDEDNESS 0=>- CONVERGENCE THEOREM

In paper [10] it is, for ordinary T-fractions, proved that ifjis holomorphic
in a sufficiently large disk I z I < R, f(O) = 1, and I f(z) - 1 I is sufficiently
small in the disk, then the corresponding T-fraction converges to f(z) locally
uniformly on the unit disk I z I < 1. In paper [II] a related theorem for
correspondence at 00 is proved. In both cases the T-fraction turns out to be
limit periodic with dn --'>- -1 as 11 --'>- 00.

The purpose of the present paper is to prove that a similar connection
between boundedness and convergence exists for general T-fractions. Since
in case of correspondence the general T-fraction is governed by two formal
series, it is likely that we must put conditions on both. It turns out that if
L(z) and L *(z) are Laurent series of junctions satisfying sufficiently strong
boundedness conditions, then the corresponding general T-fraction will exist
and will converge to the "right" functions in neighborhoods of 0 and 00.

Notational Remarks. In the following Land L * shall denote the functions
having L(z) and L *(z) as their Laurent expansions (at 0 and at 00). Further
more, for any fixed C1 , we shall let 2 c denote the set of formal Laurent

• 1
senes

with that particular value of C1 •

THEOREM. For any fixed C1 =F 0 there exist two ordered pairs (0.:, R), ({j, p)
ojpositive numbers,

1
p<~<R,

such that the following holds for all (L(z), L*(z)) with L(z) E 2 c :
1
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If

and
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L is a holomorphic function in the disk
I z I < R and there satisfies the condition

IL(z) - 1 - c1z I ~ 0:

L * is a holomorphic function in the domain
I z I > p and there satisfies the condition

I L*(z)1 ~ (3,

(2.1)

(2.2)

then (L(z), L *(z)) has a corresponding nonterminating general T-fraction

1 + K F.,z
"=1 1 + G.,z

with the property that

lim F., = - lim G., = F
n"OO n--loOO

exists and is #0. The general T-fraction converges to L(z) locally uniformly
in I z I < 1/1 F I and to L*(z) locally uniformly in I z I > 1/1 Fl.

Before proving the theorem we shall make some remarks:

Remark 1. For any fixed C1 =1= 0 the pair (L(z), L*(z)) = (1 + c1z, 0)
obviously satisfies the conditions (2. I) and (2.2), regardless of the values of
0:, R, fJ, p. It is easy to prove, that it has the corresponding general T-fraction

and that this converges to 1 + c1z locally uniformly in I z 1 < 1/1 C1 I and to 0
locally uniformly in I z I > 1/1 C1 I. The theorem expresses the fact that if
(L(z), L *(z)) is close to (1 + C1Z, 0) in a certain sense, then it acts similarly
as far as the corresponding general T-fraction is concerned.

Remark 2. If 0:, R, (3, p "work" in the sense of the theorem, and 0:', R', fJ'
p' are positive numbers with 0:' ~ 0:, R' ;? R, fJ' ~ (3, p' ~ p they will also
"work" in the same meaning.

Remark 3. To any pair of series (1.4), which are Laurent expansions of
functions, we can construct a pair (L, L*) of functions, meeting the require
ments (2. I) and (2.2). In fact

L(z) = L(kz) + (1 - k) c1z,

L*(z) = L* (~)
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will do for all sufficiently small I k [. Observe that this transformation does
not change Cl •

Remark 4. Let a and b be distinct complex numbers #0, and let

L(z) = 1 - abz
2

1 - az '
L*(z) = 0.

Then obviously L * satisfies the condition (2.2), regardless of the values of p
and (j. We also see, that C1 = a, and that

az2

L(z) - 1 - az = (a - b)--.
1 - az

On any fixed disk I z I < R < I/[ a I this can be made arbitrarily small by
taking b to be sufficiently close to a. This, however, is not enough to satisfy
(2.1), since R cannot be taken to be >1/1 C1 [ = 111 a I. It is easy to see that
the corresponding general T-fraction exists and is of the form

1 + az bz az bz
1 - az + 1 - bz + 1 - az + I - bz + ...

Since a # b, this is obviously not limit periodic.

Proof of the Theorem. Without loss of generality we may assume that
I ct I < 1 and hence ct # 1. Since we already have required C1 # 0, we
know that (L(z), L *(z» has a proper start

and a descendant (/(z), I*(z)):

I(z) = 1 + d1z + d2z2 + ... ,
I*(z) = dri + d:1z-1+ d:2z-2 + ....

(2.3)

In the proof we shall need the following formulas, which are proved by
straightforward computations:

(2.4)

L(z) - 1 - C1z
C2 c1zI(z) - I - d1z = - Z - (2.5)
C1 _L~(z--,-)_-_I_-_c-=l_z +1
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1*( ) (L*(z) - c:) CIZ

Z = (L*(z) - 1)(1 - cri) .

(2.6)

(2.7)

Let m and M be arbitrary positive numbers such that

m < I cll < M, (2.8)

and let () be an arbitrary positive number < 1. After having chosen m, M,
and e, let ex, R, (3, p be positive numbers such that (3 < 1 and

2
mR ~ ex + e'

m~2 + /!!f3 ~ (1 - e) . min{M - I cI I, I cI 1- m},

2Mp
(1 - (3)2 ~ e.

(2.9a)

(2.9b)

(2.9c)

The existence of such numbers is trivial. We also see, that once such a
quadruple is determined, any quadruple (ex', R', (3', p') of positive numbers
with

ex' ~ ex, R' ~R, (3' ~ (3, p' ~ p

will satisfy (2.9). Furthermore, it follows from (2.9a) that R > 1/1 CI 1 and
from (2.9c) that p < 1/1 CI I. (We even see that R > 2/1 CI I and p < 1/(2 [CI I)
for any R, p satisfying the set (2.9) of inequalities.)

Assume now that Land L* satisfy the conditions (2.1) and (2.2) with the
values just chosen for ex, R, (3, p. From (2.1) it follows, by using Schwarz'
Lemma twice:

I
L(z) - 1 - Clz I :s::::~

z '-':: R in Izi < R,

in I z 1< R.

(2.10)

(2.11)

This also holds at the origin (by removing the singularity in the usual way),
and hence we have

(2.1 I')
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From (2.5), (2.10), (2.11'), and (2.9a) it follows that / is holomorphic in
I z I < R and there satisfies the inequality

el: el:
I/(z) - 1 - d1z I :(;: -R + R :(;: 8 . Ci. (2.12)m m - el:

From (2.4), (2.2) with z ~ 00, (2.11'), and (2.9b) it follows that

:(;: (I - B) . min{M - I C1 I, I C1 I - m}. (2.13)

From (2.2) we have

I L*(z) - c;j I :(;: 2f3

and

in I z I> p

L *(z) - c;j ~ o.

An "exterior domain version" of Schwarz's Lemma (obtained by using
Schwarz's Lemma on L*(IIO - Co in the disk I , I < lip) thus gives

I(L*(z) - c;j)z I :(;: 2f3p in I z I> p,

and hence we have from (2.7) and (2.9c) that 1* is holomorphic in I z I > p
and

* 2f3MpII (z)/ :(;: (l _ (3)2 :(;: 8 . f3. (2.14)

Conditions (2.12) and (2.14) show that the descendant (/(z), /*(z)) satisfies
the conditions (2.1) and (2.2) with (el:, (3) replaced by (eel:, e~). Furthermore,
from (2.13) it follows that

m < I d11 < M.

The inequalities (2.9) obviously hold when (el:,~) is replaced by (eel:, e(3),
(2.9b) even with

8(1 - 8) . min{M - 1Cl I, I C1 I - m} :(;: (1 - fJ) • min{M - Id11, Id11- m}

on the right-hand side. Hence we may repeat the argument and obtain a
descendant of (/(z), /*(z)), satisfying (2.1) and (2.2) with (el:, (3) replaced by
(fJ2 cx, fJ2(3). This process may be continued as long as we know that the
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coefficient of z in the first of the two series always is in the (m, M)-annulus
(2.8). Denoting the possible kth descendant by (LUC)(z), L *(k)(Z»,

we have

L (")(z) = I + I c~k)zn,
n~l

o
L *(k)(Z) = L: c:(k)zn,

n=-oo

i cik
) ~ Cl I ~ I cil) - Cl I + I C~2) - C~I) I + ... + I c~") - C~k-ll i

~ (1 - 0)(1 + 0 + ... + Ok-I) . min{M - I CI I, I Cl I - m}

< min{M - I Cl I, I Cl I - m}.

Hence m < I dk
) I < M for all k, and all descendants exist, and hence the

corresponding general T-fraction. Since the series L I dk ) - die-I) 1 converges,
the sequence {dk)} must converge, and since F" = dIe), we have

limF" = F,
k->oo

where m ~ 1 F I ~ M.

Since furthermore 1 ct(/c) I ~ Ok . f3 and

we have

lim G" = ~F.
k->oo

The "convergence part" of the statement in the theorem is a simple
consequence of a theorem in Perron [8, p. 93] on limit periodic continued
fractions. The argument is very similar to the one given in [10], and shall be
omitted here.

3. FINAL REMARKS

Let Cl #- 0 be given, and let Rand p be any two positive numbers such that

2
R>~,

Then there exist numbers ex > 0, f3 > 0, such that if L(z) E 2 c and (2.1) and
1

(2.2) are satisfied, then the corresponding general T-fraction exists, is limit
periodic with Fn --+ F #- 0, Gn --+ - F, and converges to L(z) locally uniformly
on I z I < 1/1 F I and to L*(z) locally uniformly on I z I > 1/[ Fl.
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In order to see this we may proceed as follows: Pick m, M such that

2 1
R < m < I C1 I < M < 2p'

and pick 0 E (0, I) such that

327

2
RO < m and

Then, for any a > °with aiR ~ m - 21Re (2.9a) holds, and for any f3 > °
with f3 < 1 and (1 - f3)2 ;> 2MpiO (2.9c) holds. Observe that if (2.9a) and
(2.9c) hold for a certain pair (a, f3), they hold for all (a', f3'), where°< a' < a,°< f3' < f3. Since the left-hand side expression of (2.9b) tends to °when ex

and f3 both tend to 0, (2.9b) holds for all sufficiently small a, f3. Hence, if
R > 2/1 C1 I and p < 1/(2 I C1 I), it is possible to find numbers m, M, e, a, f3,
such that (2.8) and (2.9) hold.

The proof of the theorem does not offer any values of Rand p better than
2/1 C1 I and 1/(2 I C1 I). Based upon the Hovstad result [2] on ordinary T
fractions a nearby conjecture would be that any pair (R, p) with

works.
For a limit-periodic continued fraction the use of converging factors [14]

is usually worth a try, since it may increase the domain of convergence and
the speed of the convergence. This has been done successfully for ordinary
T-fractions in [12], and is discussed more generally by Gill in several papers,
e.g., [1]. In the present case the method would mean to replace Sn(O) by
Sn(Fz) at 0 (or rather SiFnz), since F usually is not known), and to replace
Sn(O) by Sn(-1) at 00, where

Numerical examples seem to indicate that in some cases very much can be
gained by such a modification.

EXAMPLE. It can be proved, that the continued fraction

00

1 + K __z_:;---~
. k~l 1 (1 + 1 )-. 5k +1 Z

(3.1)
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corresponds at 0 to a series, representing a function f, meromorphic in the
disk I z I < 5. It can furthermore be proved, that the continued fraction (3.1)
converges to j(z) in I z I < I and in no larger disk, but that the sequence
{Sn(z)} converges to j(z) in I z I < 5 (except at possible poles).

As for the speed of convergence, the values

j( -0.9) = 0.498, j(0.9) = 1.568,

rounded in the 3rd decimal place need n = 46 and n = 80 in the usual
continued fraction algorithm (i.e., Sn(O)), whereas they are obtained already
for n = 3 with the modification (i.e., Sn(z)).

The use of converging factors will be discussed in more detail in a sub
sequent paper.
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