JOURNAL OF APPROXIMATION THEORY 26, 317-328 (1979)

General T-Fractions Corresponding to Functions Satisfying Certain Boundedness Conditions

HAAKON WAADELAND*

Universitetet i Trondheim, Matematisk Institutt, NLHT, 7000 Trondheim, Norway and Department of Mathematics, University of Colorado, Boulder, Colorado 80309

Communicated by Oved Shisha Received February 6, 1978

1. DEFINITION AND INTRODUCTORY REMARKS

We shall use the symbol K to denote a continued fraction (terminating or non-terminating) in a similar manner as the familiar symbols \sum and \prod are used to denote a sum and a product:

$$\overset{\sim}{\mathsf{K}}_{n=1}^{\infty} \frac{a_{n}}{b_{n}} = \frac{a_{1}}{b_{1}} + \frac{a_{2}}{b_{2}} + \dots + \frac{a_{N}}{b_{N}} = \frac{a_{1}}{b_{1} + \frac{a_{2}}{b_{2} + \dots}},$$
$$\overset{\sim}{+} \frac{a_{N}}{b_{N}}$$
$$\overset{\sim}{\mathsf{K}}_{n=1}^{\infty} \frac{a_{n}}{b_{n}} = \frac{a_{1}}{b_{1}} + \frac{a_{2}}{b_{2}} + \dots = \frac{a_{1}}{b_{1} + \frac{a_{2}}{b_{2} + \dots}}.$$

The Nth approximant of the nonterminating continued fraction

$$\mathop{\mathsf{K}}\limits_{n=1}^{\infty}\frac{a_n}{b_n}$$

is

$$\mathop{\mathsf{K}}_{n=1}^{N}\frac{a_{n}}{b_{n}}.$$

Convergence of a nonterminating continued fraction means convergence of the sequence of approximants.

* This research was supported by the Norwegian Research Council for Science and the Humanities.

0021-9045/79/080317-12\$02.00/0 Copyright © 1979 by Academic Press, Inc. All rights of reproduction in any form reserved. A general T-fraction is a continued fraction of the form

$$P(z) + Q\left(\frac{1}{z}\right) + c_0 + \bigvee_{n=1}^{N} \frac{F_n z}{1 + G_n z}, \qquad (1.1)$$

where P and Q are polynomials $\equiv 0$ or without constant term and where c_0 , F_n , G_n are complex numbers, $F_n \neq 0$ for n < N + 1. If $N = \infty$, the general T-fraction is called *infinite* or *nonterminating*, if $N < \infty$, it is *finite* or *terminating*. The case N = 0, where the K-expression is empty and hence 0, is also accepted.

In the nonterminating case and with $P(z) + Q(1/z) + c_0 = e_0 + d_0 z$, $e_0 \neq 0$ the general *T*-fraction has the equivalent form

$$e_0 + d_0 z + \bigvee_{n=1}^{\infty} \frac{z}{e_n + d_n z}, \quad e_n \neq 0 \quad \text{for} \quad n \ge 0.$$
 (1.1')

Continued fractions of this form are referred to by Perron [8, p. 173] as "Thronsche Kettenbrüche," since they are generalizations of the continued fractions

$$1 + d_0 z + \bigvee_{n=1}^{\infty} \frac{z}{1 + d_n z},$$
 (1.2)

introduced by Thron [9]. Later the continued fractions (1.2) are referred to as *T*-fractions. In addition to Perron's studies the continued fractions (1.1') or (1.1) have been studied by McCabe and Murphy (see, e.g., [7]) and independently by Jones and Thron [3].

Some of the most essential properties of general *T*-fractions have to do with their (possible) correspondence to pairs $(L(z), L^*(z))$ of formal Laurent series and with their relation to two-point Pade tables [3, 5]. The approximants of a general *T*-fraction (1.1) with $Q \equiv 0$ and $G_n \neq 0$, $n \ge 1$ form a diagonal in the two-point Pade table of $(L(z), L^*(z))$. General *T*-fractions have also proved useful in solving algebraic equations numerically [4] and in solving a certain moment problem [6].

The general T-fraction (1.1) is said to correspond to the ordered pair $(L(z), L^*(z))$ of formal Laurent series

$$L(z) = Q\left(\frac{1}{z}\right) + c_0 + \sum_{k=1}^{\infty} c_k z^k,$$

$$L^*(z) = P(z) + \sum_{k=-\infty}^{0} c_k^* z^k$$
(1.3)

if and only if P, Q, c_0 are the same in (1.1) and (1.3), and for any natural

number n the nth approximant of (1.1) has a Laurent expansion at 0 with the start

$$Q\left(\frac{1}{z}\right) + c_0 + \sum_{k=1}^n c_k z^k$$
 (correspondence at 0),

and a Laurent expansion at ∞ with the start

$$P(z) + \sum_{k=-(n-1)}^{0} c_k^* z^k$$
 (correspondence at ∞),

where c_k and c_k^* have the same meaning as in (1.3) [3]. (In the termininating case all *n*th approximants for $n \ge N$ are equal to the *N*th approximant.) In paper [3] a set of necessary and sufficient conditions on the coefficients of L(z) and $L^*(z)$ for existence of a corresponding general, nonterminating *T*-fraction with all $G_n \ne 0$ is given. It is easy to prove that $G_n \ne 0$ for all n < N + 1 is necessary (and sufficient) for a general *T*-fraction to correspond to some pair (1.3) of formal Laurent series [13], and hence the condition $G_n \ne 0$ does not represent any restriction. However, the theorem in [3] does not cover the terminating case.

It is easy to prove that the pair (1.3) corresponds to the general *T*-fraction (1.1) if and only if

$$\left(1+\sum_{k=1}^{\infty}c_{k}z^{k}-P(z),1-c_{0}+c_{0}^{*}+\sum_{k=-\infty}^{-1}c_{k}^{*}z^{k}-Q\left(\frac{1}{z}\right)\right)$$

corresponds to

$$1 + \mathop{\mathsf{K}}_{n=1}^{N} \frac{F_n z}{1 + G_n z} \, .$$

Hence, without loss of generality we may restrict ourselves to formal Laurent series of the types

$$L(z) = 1 + \sum_{k=1}^{\infty} c_k z^k,$$

$$L^*(z) = \sum_{k=-\infty}^{0} c_k^* z^k,$$
(1.4)

and general T-fractions of the form

$$1 + \bigvee_{n=1}^{N} \frac{F_k z}{1 + G_k z} \qquad [13]. \tag{1.5}$$

Let $(L(z), L^*(z))$ be a pair of formal power series (1.4), and let for a fixed n, $1 \le n < N+1$,

$$1 + \bigvee_{k=1}^{n} \frac{F_{k}z}{1 + G_{k}z}$$
(1.6)

be a terminating general *T*-fraction with the property that for any integer k, $1 \le k \le n$, the kth approximant of (1.6) has a Laurent expansion at 0 with the start

$$1+\sum_{\nu=1}^k c_\nu z^\nu$$

and a Laurent expansion at ∞ with the start

$$\sum_{\nu=-(k-1)}^{0} c_{\nu}^{*} z^{\nu},$$

 c_{ν} and c_{ν}^* being the same as in (1.4). Then (1.6) shall be called a *proper start* (a proper *n*-start if we want to emphasize the length) of a possible general *T*-fraction corresponding to $(L(z), L^*(z))$, or briefly a proper start for $(L(z), L^*(z))$. It is obvious, that except for the case $L(z) = L^*(z) = 1$, when the corresponding general *T*-fraction is 1, a necessary condition for existence of a corresponding general *T*-fraction is the existence of proper starts of any length or a proper start which is the (terminating) general *T*-fraction corresponding to $(L(z), L^*(z))$. It is rather easy to prove that this is also sufficient (A crucial point is the uniqueness of the parameters F_k , G_k) [13].

It is a straightforward verification to prove that for any $(L(z), L^*(z)) \neq (1, 1)$ a proper 1-start exists if and only if $c_1 \neq 0$, $c_0^* \neq 1$, in which case

$$1 + \frac{F_1 z}{1 + G_1 z}$$
 with $F_1 = c_1$, $G_1 = \frac{c_1}{c_0^* - 1}$ (1.7)

is the unique proper 1-start. If a proper 1-start exists, the formal identities

$$L(z) = 1 + \frac{F_1 z}{G_1 z + l(z)}, \qquad L^*(z) = 1 + \frac{F_1 z}{G_1 z + l^*(z)}$$
(1.8)

define a new pair $(l(z), l^*(z))$ of formal Laurent series of the form (1.4). This pair is in [13] called the *descendant* of $(L(z), L^*(z))$. In the particular case when $(l(z), l^*(z)) = (1, 1)$ the terminating general *T*-fraction (1.7) is the corresponding general *T*-fraction of $(L(z), L^*(z))$. In all other cases,

320

 $(l(z), l^*(z))$ may or may not have a proper 1-start. It is easy to prove that the following holds for any $n \ge 2$:

$$1 + \mathbf{K}_{k=1}^{n} \frac{F_k z}{1 + G_k z}$$

is a proper *n*-start for $(L(z), L^*(z))$ if and only if

$$1 + \mathop{\mathsf{K}}_{k=2}^{n} \frac{F_k z}{1 + G_k z}$$

is a proper (n-1)-start for $(l(z), l^*(z))$ [13].

2. A Boundedness \Rightarrow Convergence Theorem

In paper [10] it is, for ordinary *T*-fractions, proved that if *f* is holomorphic in a sufficiently large disk |z| < R, f(0) = 1, and |f(z) - 1| is sufficiently small in the disk, then the corresponding *T*-fraction converges to f(z) locally uniformly on the unit disk |z| < 1. In paper [11] a related theorem for correspondence at ∞ is proved. In both cases the *T*-fraction turns out to be limit periodic with $d_n \rightarrow -1$ as $n \rightarrow \infty$.

The purpose of the present paper is to prove that a similar connection between boundedness and convergence exists for general *T*-fractions. Since in case of correspondence the general *T*-fraction is governed by *two* formal series, it is likely that we must put conditions on both. It turns out that if L(z) and $L^*(z)$ are Laurent series of *functions* satisfying sufficiently strong boundedness conditions, then the corresponding general *T*-fraction will exist and will converge to the "right" functions in neighborhoods of 0 and ∞ .

Notational Remarks. In the following L and L* shall denote the functions having L(z) and $L^*(z)$ as their Laurent expansions (at 0 and at ∞). Furthermore, for any fixed c_1 , we shall let \mathscr{L}_{c_1} denote the set of formal Laurent series

$$1 + c_1 z + c_2 z^2 + \cdots$$

with that particular value of c_1 .

THEOREM. For any fixed $c_1 \neq 0$ there exist two ordered pairs (α , R), (β , ρ) of positive numbers,

$$\rho < \frac{1}{|c_1|} < R,$$

such that the following holds for all $(L(z), L^*(z))$ with $L(z) \in \mathscr{L}_{c_i}$:

If

322

L is a holomorphic function in the disk
$$|z| < R$$
 and there satisfies the condition (2.1)

$$|L(z)-1-c_1z| \leq \alpha$$

and

 L^* is a holomorphic function in the domain $|z| > \rho$ and there satisfies the condition (2.2)

 $|L^*(z)| \leq \beta$,

then $(L(z), L^*(z))$ has a corresponding nonterminating general T-fraction

$$1 + \mathbf{K}_{n=1}^{\infty} \frac{F_n z}{1 + G_n z}$$

with the property that

$$\lim_{n\to\infty}F_n=-\lim_{n\to\infty}G_n=F$$

exists and is $\neq 0$. The general T-fraction converges to L(z) locally uniformly in |z| < 1/|F| and to $L^*(z)$ locally uniformly in |z| > 1/|F|.

Before proving the theorem we shall make some remarks:

Remark 1. For any fixed $c_1 \neq 0$ the pair $(L(z), L^*(z)) = (1 + c_1 z, 0)$ obviously satisfies the conditions (2.1) and (2.2), regardless of the values of α , R, β , ρ . It is easy to prove, that it has the corresponding general *T*-fraction

$$1 + \frac{c_{1}z}{1 - c_{1}z} + \frac{c_{1}z}{1 - c_{1}z} + \frac{c_{1}z}{1 - c_{1}z} + \cdots$$

and that this converges to $1 + c_1 z$ locally uniformly in $|z| < 1/|c_1|$ and to 0 locally uniformly in $|z| > 1/|c_1|$. The theorem expresses the fact that if $(L(z), L^*(z))$ is close to $(1 + c_1 z, 0)$ in a certain sense, then it acts similarly as far as the corresponding general *T*-fraction is concerned.

Remark 2. If α , R, β , ρ "work" in the sense of the theorem, and α' , R', β' ρ' are positive numbers with $\alpha' \leq \alpha$, $R' \geq R$, $\beta' \leq \beta$, $\rho' \leq \rho$ they will also "work" in the same meaning.

Remark 3. To any pair of series (1.4), which are Laurent expansions of functions, we can construct a pair (\tilde{L}, \tilde{L}^*) of functions, meeting the requirements (2.1) and (2.2). In fact

$$\tilde{L}(z) = L(kz) + (1-k)c_1z,$$
$$\tilde{L}^*(z) = L^*\left(\frac{z}{k}\right)$$

will do for all sufficiently small |k|. Observe that this transformation does not change c_1 .

Remark 4. Let a and b be distinct complex numbers $\neq 0$, and let

$$L(z) = \frac{1-abz^2}{1-az}, \qquad L^*(z) = 0.$$

Then obviously L^* satisfies the condition (2.2), regardless of the values of ρ and β . We also see, that $c_1 = a$, and that

$$L(z) - 1 - az = (a - b) \frac{az^2}{1 - az}$$

On any fixed disk |z| < R < 1/|a| this can be made arbitrarily small by taking b to be sufficiently close to a. This, however, is not enough to satisfy (2.1), since R cannot be taken to be $>1/|c_1| = 1/|a|$. It is easy to see that the corresponding general T-fraction exists and is of the form

$$1 + \frac{az}{1 - az} + \frac{bz}{1 - bz} + \frac{az}{1 - az} + \frac{bz}{1 - bz} + \cdots$$

Since $a \neq b$, this is obviously not limit periodic.

Proof of the Theorem. Without loss of generality we may assume that $|c_0^*| < 1$ and hence $c_0^* \neq 1$. Since we already have required $c_1 \neq 0$, we know that $(L(z), L^*(z))$ has a proper start

$$1 + \frac{F_1 z}{1 + G_1 z}$$
, $F_1 = c_1$, $G_1 = \frac{c_1}{c_0^* - 1}$,

and a descendant $(l(z), l^*(z))$:

$$l(z) = 1 + d_1 z + d_2 z^2 + \cdots,$$

$$l^*(z) = d_0^* + d_{-1}^* z^{-1} + d_{-2}^* z^{-2} + \cdots.$$
(2.3)

In the proof we shall need the following formulas, which are proved by straightforward computations:

$$d_1 = \frac{c_1}{1 - c_0^*} - \frac{c_2}{c_1}, \qquad (2.4)$$

$$l(z) - 1 - d_1 z = \frac{c_2}{c_1} z - \frac{\frac{L(z) - 1 - c_1 z}{c_1 z}}{\frac{L(z) - 1 - c_1 z}{c_1 z} + 1},$$
 (2.5)

640/26/4-3

HAAKON WAADELAND

$$d_0^* = -\frac{c_1 c_{-1}^*}{(1 - c_0^*)^2}, \qquad (2.6)$$

$$l^{*}(z) = \frac{(L^{*}(z) - c_{0}^{*}) c_{1}z}{(L^{*}(z) - 1)(1 - c_{0}^{*})}.$$
(2.7)

Let *m* and *M* be arbitrary positive numbers such that

$$m < |c_1| < M, \tag{2.8}$$

and let θ be an arbitrary positive number <1. After having chosen *m*, *M*, and θ , let α , *R*, β , ρ be positive numbers such that β < 1 and

$$mR \geqslant \alpha + rac{2}{ heta},$$
 (2.9a)

$$\frac{\alpha}{mR^2} + \frac{\beta M}{1-\beta} \leqslant (1-\theta) \cdot \min\{M - |c_1|, |c_1| - m\}, \quad (2.9b)$$

$$\frac{2M\rho}{(1-\beta)^2} \leqslant \theta. \tag{2.9c}$$

The existence of such numbers is trivial. We also see, that once such a quadruple is determined, any quadruple ($\alpha', R', \beta', \rho'$) of positive numbers with

$$lpha'\leqslantlpha, \quad R'\geqslant R, \quad eta'\leqslanteta, \quad
ho'\leqslant
ho$$

will satisfy (2.9). Furthermore, it follows from (2.9a) that $R > 1/|c_1|$ and from (2.9c) that $\rho < 1/|c_1|$. (We even see that $R > 2/|c_1|$ and $\rho < 1/(2|c_1|)$ for any R, ρ satisfying the set (2.9) of inequalities.)

Assume now that L and L* satisfy the conditions (2.1) and (2.2) with the values just chosen for α , R, β , ρ . From (2.1) it follows, by using Schwarz' Lemma twice:

$$\left|\frac{L(z)-1-c_1z}{z}\right| \leq \frac{\alpha}{R} \quad \text{in} \quad |z| < R, \tag{2.10}$$

$$\left|\frac{L(z)-1-c_1z}{z^2}\right| \leqslant \frac{\alpha}{R^2} \quad \text{in} \quad |z| < R.$$
 (2.11)

This also holds at the origin (by removing the singularity in the usual way), and hence we have

$$|c_2| \leqslant \frac{\alpha}{R^2}. \tag{2.11'}$$

324

From (2.5), (2.10), (2.11'), and (2.9a) it follows that l is holomorphic in |z| < R and there satisfies the inequality

$$|l(z)-1-d_1z| \leq \frac{\alpha}{mR}+\frac{\alpha}{mR-\alpha} \leq \theta \cdot \alpha.$$
 (2.12)

From (2.4), (2.2) with $z \rightarrow \infty$, (2.11'), and (2.9b) it follows that

$$|d_{1} - c_{1}| = \left|\frac{c_{1}c_{0}^{*}}{1 - c_{0}^{*}} - \frac{c_{2}}{c_{1}}\right| \leq \frac{M\beta}{1 - \beta} + \frac{\alpha}{mR^{2}}$$
$$\leq (1 - \theta) \cdot \min\{M - |c_{1}|, |c_{1}| - m\}.$$
(2.13)

From (2.2) we have

 $|L^*(z) - c_0^*| \leq 2\beta$ in $|z| > \rho$

and

$$L^*(z) - c_0^* \to 0.$$

An "exterior domain version" of Schwarz's Lemma (obtained by using Schwarz's Lemma on $L^*(1/\zeta) - c_0$ in the disk $|\zeta| < 1/\rho$) thus gives

$$|(L^*(z)-c_0^*)z| \leq 2\beta\rho \quad \text{in} \quad |z| > \rho,$$

and hence we have from (2.7) and (2.9c) that l^* is holomorphic in $|z| > \rho$ and

$$|l^*(z)| \leq \frac{2\beta M\rho}{(1-\beta)^2} \leq \theta \cdot \beta.$$
(2.14)

Conditions (2.12) and (2.14) show that the descendant $(l(z), l^*(z))$ satisfies the conditions (2.1) and (2.2) with (α, β) replaced by $(\theta\alpha, \theta\beta)$. Furthermore, from (2.13) it follows that

$$m < |d_1| < M.$$

The inequalities (2.9) obviously hold when (α, β) is replaced by $(\theta \alpha, \theta \beta)$, (2.9b) even with

$$\theta(1-\theta) \cdot \min\{M - |c_1|, |c_1| - m\} \leq (1-\theta) \cdot \min\{M - |d_1|, |d_1| - m\}$$

on the right-hand side. Hence we may repeat the argument and obtain a descendant of $(l(z), l^*(z))$, satisfying (2.1) and (2.2) with (α, β) replaced by $(\theta^2 \alpha, \theta^2 \beta)$. This process may be continued as long as we know that the

coefficient of z in the first of the two series always is in the (m, M)-annulus (2.8). Denoting the possible kth descendant by $(L^{(k)}(z), L^{*(k)}(z))$,

$$L^{(k)}(z) = 1 + \sum_{n=1}^{\infty} c_n^{(k)} z^n, \qquad L^{*(k)}(z) = \sum_{n=-\infty}^{0} c_n^{*(k)} z^n,$$

we have

$$|c_1^{(k)} - c_1| \leq |c_1^{(1)} - c_1| + |c_1^{(2)} - c_1^{(1)}| + \dots + |c_1^{(k)} - c_1^{(k-1)}|$$

$$\leq (1 - \theta)(1 + \theta + \dots + \theta^{k-1}) \cdot \min\{M - |c_1|, |c_1| - m\}$$

$$< \min\{M - |c_1|, |c_1| - m\}.$$

Hence $m < |c_1^{(k)}| < M$ for all k, and all descendants exist, and hence the corresponding general T-fraction. Since the series $\sum |c_1^{(k)} - c_1^{(k-1)}|$ converges, the sequence $\{c_1^{(k)}\}$ must converge, and since $F_k = c_1^{(k)}$, we have

$$\lim_{k \to \infty} F_k = F, \quad \text{where} \quad m \leq |F| \leq M.$$

Since furthermore $|c_0^{*(k)}| \leq \theta^k \cdot \beta$ and

$$G_k = \frac{c_1^{(k)}}{c_0^{*(k)} - 1},$$

we have

$$\lim_{k\to\infty}G_k=-F.$$

The "convergence part" of the statement in the theorem is a simple consequence of a theorem in Perron [8, p. 93] on limit periodic continued fractions. The argument is very similar to the one given in [10], and shall be omitted here.

3. FINAL REMARKS

Let $c_1 \neq 0$ be given, and let R and ρ be any two positive numbers such that

$$R > \frac{2}{|c_1|}, \quad \rho < \frac{1}{2|c_1|}.$$

Then there exist numbers $\alpha > 0$, $\beta > 0$, such that if $L(z) \in \mathscr{L}_{c_1}$ and (2.1) and (2.2) are satisfied, then the corresponding general *T*-fraction exists, is limit periodic with $F_n \to F \neq 0$, $G_n \to -F$, and converges to L(z) locally uniformly on |z| < 1/|F| and to $L^*(z)$ locally uniformly on |z| > 1/|F|.

In order to see this we may proceed as follows: Pick m, M such that

$$\frac{2}{R} < m < |c_1| < M < \frac{1}{2\rho},$$

and pick $\theta \in (0, 1)$ such that

$$\frac{2}{R\theta} < m$$
 and $\frac{M}{\theta} < \frac{1}{2\rho}$.

Then, for any $\alpha > 0$ with $\alpha/R \leq m - 2/R\theta$ (2.9a) holds, and for any $\beta > 0$ with $\beta < 1$ and $(1 - \beta)^2 \geq 2M\rho/\theta$ (2.9c) holds. Observe that if (2.9a) and (2.9c) hold for a certain pair (α, β) , they hold for all (α', β') , where $0 < \alpha' < \alpha$, $0 < \beta' < \beta$. Since the left-hand side expression of (2.9b) tends to 0 when α and β both tend to 0, (2.9b) holds for all sufficiently small α , β . Hence, if $R > 2/|c_1|$ and $\rho < 1/(2 |c_1|)$, it is possible to find numbers $m, M, \theta, \alpha, \beta$, such that (2.8) and (2.9) hold.

The proof of the theorem does not offer any values of R and ρ better than $2/|c_1|$ and $1/(2|c_1|)$. Based upon the Hovstad result [2] on ordinary T-fractions a nearby conjecture would be that any pair (R, ρ) with

$$\rho < \frac{1}{\mid c_1 \mid} < R$$

works.

For a limit-periodic continued fraction the use of converging factors [14] is usually worth a try, since it may increase the domain of convergence and the speed of the convergence. This has been done successfully for ordinary *T*-fractions in [12], and is discussed more generally by Gill in several papers, e.g., [1]. In the present case the method would mean to replace $S_n(0)$ by $S_n(Fz)$ at 0 (or rather $S_n(F_nz)$, since *F* usually is not known), and to replace $S_n(0)$ by $S_n(-1)$ at ∞ , where

$$S_n(w) = 1 + \frac{F_1 z}{1 + G_1 z} + \dots + \frac{F_n z}{1 + G_n z + w}$$

Numerical examples seem to indicate that in some cases very much can be gained by such a modification.

EXAMPLE. It can be proved, that the continued fraction

$$1 + \bigvee_{k=1}^{\infty} \frac{z}{1 - \left(1 + \frac{1}{5^{k+1}}\right)z}$$
(3.1)

corresponds at 0 to a series, representing a function f, meromorphic in the disk |z| < 5. It can furthermore be proved, that the continued fraction (3.1) converges to f(z) in |z| < 1 and in no larger disk, but that the sequence $\{S_n(z)\}$ converges to f(z) in |z| < 5 (except at possible poles).

As for the speed of convergence, the values

$$f(-0.9) = 0.498, \quad f(0.9) = 1.568,$$

rounded in the 3rd decimal place need n = 46 and n = 80 in the usual continued fraction algorithm (i.e., $S_n(0)$), whereas they are obtained already for n = 3 with the modification (i.e., $S_n(z)$).

The use of converging factors will be discussed in more detail in a subsequent paper.

REFERENCES

- 1. J. GILL, The use of attractive fixed points in accelerating the convergence of limitperiodic continued fractions. *Proc. Amer. Math. Soc.* 47 (1975), 119–126; *MR* 50 No. 5260.
- 2. R. M. HOVSTAD, Solution of a convergence problem in the theory of *T*-fractions, *Proc. Amer. Math. Soc.* 48 (1975), 337–343; *MR* 51 No. 866.
- W. B. JONES, Multiple point Padé tables in "Padé and Rational Approximation" (E. B. Saff and R. S. Varga, Ed.), pp. 163–171, Academic Press, New York, 1977.
- 4. W. B. JONES AND A. MAGNUS, Computation of zeros and poles of analytic functions, submitted for publication.
- W. B. JONES AND W. J. THRON, Two-point Padé tables and T-fractions, Bull. Amer. Math. Soc. 83, No. 3 (May 1977), 388-390.
- 6. W. B. JONES, W. J. THRON, AND H. WAADELAND, On a strong Stieltjes moment problem, to appear in *Trans. Amer. Math. Soc.*
- J. H. MCCABE AND J. A. MURPHY, Continued fractions which correspond to power series expansions at two points, J. Inst. Math. Appl. 17 (1976), 233-247; MR 54 No. 10614.
- O. PERRON, "Die Lehre von den Kettenbrüchen, Band II," Teubner, Stuttgart, 1957. MR 19 No. 25.
- 9. W. J. THRON, Some properties of the continued fractions $(1 + d_0 z) + K(z/(1 + d_n z))$, Bull. Amer. Math. Soc. 54 (1948), 206–218; MR 9 No. 508.
- H. WAADELAND, On T-fractions of functions holomorphic and bounded in a circular disc, Norske Vid. Selsk. Skr. (Trondheim) No. 8 (1964); MR 31 No. 1364.
- 11. H. WAADELAND, On T-fractions of certain functions with a first order pole at the point of infinity, Norske Vid. Selsk. Forh. Trondheim 40 (1967), 1-6; MR 38 No. 2289.
- 12. H. WAADELAND, A convergence property of certain T-fraction expansions, Norske Vid. Selsk. Skr. (Trondheim) No. 9 (1966); MR 37 No. 1568.
- 13. H. WAADELAND, Some properties of general T-fractions, *Mathematics* no. 5/78, Dept. of Mathematics. The University of Trondheim.
- 14. P. WYNN, Converging factors for continued fractions, Numer. Math. 1 (1959), 272-320.